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Abstract

Individuals are often faced with temptations that can lead them astray from long-term goals. We’re interested in developing
interventions that steer individuals toward making good initial decisions and then maintaining those decisions over
time. In the realm of financial decision making, a particularly successful approach is the prize-linked savings account:
individuals are incentivized to make deposits by tying deposits to a periodic lottery that awards bonuses to the savers.
Although these lotteries have been very effective in motivating savers across the globe, they are a one-size-fits-all solution.
We investigate whether customized bonuses can be more effective in tasks involving delayed gratification. We formalize a
delayed-gratification task as a Markov decision problem in which the agent must repeatedly choose between two actions:
defecting, which obtains a small immediate reward, and persisting, which eventually obtains a large but delayed reward.
We characterize individuals as rational agents subject to temporal discounting and stochastic fluctuations in willpower.
Willpower is conceived of as modulating the subjective value of the small immediate reward. Our theory is able to explain
key behavioral findings in intertemporal choice, including finish-line effects and the dependence of behavior on relative
value of immediate and delayed rewards. We created an online delayed-gratification game in which players score points
by selecting a queue to wait in and effortfully advancing to the front. Data collected from the game is fit to the model, and
the instantiated model is then used to optimize predicted player performance over a space of incentives. We demonstrate
that customized incentive structures can improve goal-directed decision making.
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Should you go hiking today or review your RLDM papers? Individuals are regularly faced with temptations that lead
them astray from long-term goals. These temptations all reflect an underlying challenge in behavioral control that involves
choosing between actions leading to small but immediate rewards and actions leading to large but delayed rewards. We
introduce a formal model of this delayed-gratification (DG) decision task, extending the Markov decision framework to
incorporate the psychological notion of willpower, and using formal models to optimize behavior by designing incentives
to assist individuals in achieving long-term goals.

In the classic marshmallow test (Mischel and Ebbesen, 1970), children are seated at a table with a single marshmallow.
They are allowed to eat the marshmallow, but if they wait while the experimenter steps out of the room, they will be
offered a second marshmallow when the experimenter returns. In this DG task, children must continually contemplate
whether to eat the marshmallow or wait for two marshmallows. Their behavior depends not only on the hypothetical
discounting of future rewards but on an individual’s moment-to-moment willpower—their ability to maintain focus on the
larger reward and not succumb to temptation before the experimenter returns. Defection at any moment eliminates the
possibility of the larger reward. We focus on modeling the temporal dynamics of behavior during the delay period.

Nearly all previous conceptualizations of intertemporal choice—situations involving decisions that produce gains and losses
at different points in time—have focused on the shape of discounting functions and the initial ‘now versus later’ decision,
not the time course. One exception is the work of McGuire and Kable (2013) who frame failure to postpone gratification as
a rational, utility-maximizing strategy when the time at which future outcomes materialize is uncertain. Our theory is
complementary in providing a rational account in the known time horizon situation. (Some DG tasks have a known time
horizon, e.g., retirement planning or dieting for a wedding.) There is a rich literature on treating human decision making
from the framework of Markov decision processes (MDPs; e.g., Shen et al., 2014; Niv et al., 2012), but this research does
not directly address intertemporal choice. Kurth-Nelson and Redish (2010, 2012) have explored a reinforcement learning
framework to model precommitment in decision making as a means of preventing impulsive defections. This interesting
work focuses on the initial decision whether to precommit rather than the ongoing possibility of defection. To the best of
our knowledge, we are the first to adopt an MDP perspective on intertemporal choice, a field which has relied primarily
primarily on verbal, qualitative accounts.

1 Formalizing Delayed-Gratification Tasks as a Markov Decision Problem

We formalize a DG task as a Markov decision problem, which we will refer to as the DGMDP. We assume time to be
quantized into discrete steps and we focus on situations with a known or assumed time horizon, denoted τ . At any step,
the agent may DEFECT and collect a small reward, or the agent may PERSIST to the next step, eventually collecting a large
reward at step τ . We use µSS and µLL to denote the smaller sooner (SS) and larger later (LL) rewards. Figure 1a shows a
finite-state representation of a one-shot task with terminal states LL and SS that correspond to resisting and succumbing to
temptation, respectively, and states for each time step between the initial and final times, t ∈ {1, 2, ..., τ}. Rewards are
associated with state transitions. The possibility of obtaining intermediate rewards during the delay period is annotated via
µ1:τ−1 ≡ {µ1, ..., µτ−1}, which we return to later.

Given the DGMDP, an optimal decision sequence is trivially obtained by value iteration. However, this sequence is a poor
characterization of human behavior. With no intermediate rewards (µ1:τ−1 = 0), it takes one of two forms: either the
agent defects at t = 1 or the agent persists through t = τ . In contrast, individuals will often persist some time and then
defect, and when placed into the same situation repeatedly, behavior is nondeterministic. For example, replicability on the
marshmallow test is quite modest (ρ < 0.30: Mischel et al., 1988).

The discrepancy between human DG behavior and the optimal decision-making framework might indicate an incompati-
bility. However, we prefer a bounded rationality perspective on human cognition according to which behavior is cast as
optimal but subject to cognitive constraints. We claim two specific constraints.

1. Individuals exhibit moment-to-moment fluctuations in willpower based on factors such as sleep, hunger, mood,
etc. Low willpower causes an immediate reward to seem more tempting, and high willpower, less tempting.
We characterize willpower as a one-dimensional Gaussian process, W = {Wt}, with w1 ∼ Gaussian(0, σ2

1) and
wt ∼ Gaussian(wt−1, σ

2). We suppose that willpower modulates an individual’s subjective value of defecting at step t:
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Figure 1: Finite-state environments
formalizing (a) a one-shot DG task,
and (b) an iterated DG task with vari-
able delays and LL outcomes
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Figure 2: (a) Value function for a DGMDP with τ = 8,
σ = .25, σ1 = .50, γ = .92, µE = µt = 0, µLL = 2,
µSS = 1, exact (colored curves) and piecewise linear
approximation (black lines). (b) Hazard functions for
the parameterization in (a) (solid blue curve), with
a higher level of LL reward (red curve), and with a
shorter delay period, τ = 6 (dashed blue curve).

Q(t, w; DEFECT) = µSS − w, (1)
where Q(s; a) denotes the value associated with performing action a in state s, and the state space consists of the
discrete step t and the continuous willpower level w.

2. Behavioral, economic, and neural accounts of decision making suggest that effort carries a cost, and that rewards are
weighed against the effort required to obtain it (e.g., Kivetz, 2003). This notion is incorporated into the model via an
effort cost, µE associated with persevering:

Q(t, w; PERSIST) =

{
µE + µt + γ EWt+1|Wt=wV (t+ 1, wt+1) for t < τ

µLL for t = τ
(2)

Although the continuous willpower variable precludes an analytical solution for V (t, w) ≡ maxa Q(t, w; a), the shape
of V (t, w) permits a piecewise linear approximation (PLA) over w for each step t. Figure 2a shows that the PLA closely
matches a solution obtained by fine discretization of the willpower space. Using the value function, we can characterize
the agent’s behavior in the DGMDP via the likelihood of defecting at various steps. With D denoting the defection step,
we can compute the hazard probability ht ≡ P (D = t|D ≥ t) for various scenarios (Figure 2b).

Taken as a rational account of human cognition, our theory explains two key phenomena in the literature. First, failure on
a DG task is sensitive to the relative magnitudes of the SS and LL rewards (Mischel, 1974). Figure 2b presents hazard
functions for two reward magnitudes. The probability of obtaining the LL reward is greater with µLL/µSS = 3 than with
µLL/µSS = 2. Figure 2b can also accommodate the finding that environmental reliability and trust in the experimenter
affect outcomes in the marshmallow test (Kidd et al., 2012): in unreliable or nonstationary environments, the expected LL
reward is lower than the advertised reward, and the DGMDP is based on reward expectations. Second, a reanalysis of
data from a population of children performing the marshmallow task shows a declining hazard rate over time (McGuire
and Kable, 2013). The rapid initial drop in the empirical curve looks remarkably like the curves in Figure 2b.

2 Optimizing Incentives

With a computational theory of the DG task in hand, we explored a mechanism-design approach (Nisan and Ronen, 1999)
aimed at steering individuals toward improved long-term outcomes. We asked whether we can provide incentives to
rational value-maximizing agents that will increase their expected reward subject to constraints on the incentives. We
explored two incentive structures. The first is related to prize-linked savings accounts (Kearney et al., 2010). The idea is to
pool a fraction of the interest earned from all deposits to savings accounts fund a prize awarded by periodic lotteries.
Although the account yields a lower interest rate to fund the lottery, the PLSA increases the net expected account balance
due to greater commitment to participation. In our work, we show that we can search over a space lottery allocations (via
the µt which specify timing and amount of awards, cast in terms of subjective value from prospect theory) to significantly
increase total payout an individual receives, and that the ideal lottery allocation depends on the agent’s discount rate. The
second incentive structure we explored is based on experiments we conducted with human subjects, and involves offering
a small portion of µLL at earlier points in time (via the µt).

3 Experiments

To collect and model behavioral data, we created a simple online delayed-gratification game in which players score points
by waiting in a queue (Figure 3a). The upper queue is short, having only one position, and delivers a 100 point reward
when the player is serviced. The lower queue is long, having τ positions, and delivers a 100τρ point reward when the
player is serviced. The reward-rate ratio, ρ, is either 1.25 or 1.50 in our experiments. Points awarded per queue are displayed
left of the queue. The player (red icon) starts in a vestibule (right side of screen) and selects a queue with the up and down
arrow keys. The game updates are clocked, at which time the player’s request is processed and the queues advance (from
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(a) (b) Figure 3: The queue-waiting game.
(a) Initial game state. (b) A snapshot
of the game, taken while the queue
advances. In this condition, bonuses
are offered at certain positions in the
long queue. Point increments are
flashed as they are awarded.

right to left). After choosing a queue, the player must hit the left-arrow key to advance or the up- or down-arrow keys to
switch queues. If the player takes no action, the simulated participants behind the player jump past. When points are
awarded, the screen flashes the points and a cash register sound is played, and the player returns to the vestibule and a
new episode begins. In our experiments, the long-queue length τ varies from episode to episode. This iterative version of
the DGMDP is described by Figure 1b. The vestibule in Figure 3a corresponds to state 1 in Figure 1b and lower queue
position closest to the service desk to state τ . Note the left-to-right reversal of the two Figures, which has often confused
the authors of this work.

We conducted a series of 4 experiments. Experiments 1 and 2 were designed to constrain parameters of the model, and
Experiments 3 and 4 were designed to test the fully-constrained model. Here, we discuss only Experiments 1 and 4. In
each experiment, participants were recruited to play the game for five minutes via Amazon Mechanical Turk. In our
analyses of player behavior, we remove the first and last thirty seconds of play.

In Experiment 1, we tested queues of lengths τ ∈ {4, 6, 8, 10, 12, 14} and relative reward rates of ρ ∈ {1.25, 1.50}. Figure 4a
shows empirical and theoretical hazard functions—dashed and solid lines, respectively—for the 6× 2 conditions. The
model has four free parameters which were fit to the data. The model shows key qualitative properties of human behavior,
including sensitivity to τ , ρ, and the relative position in the long queue, and obtains good quantitative fits to the data. This
Figure shows data from a population of 40 participants. We divided the participants into low and high performers based
on a median split of their overall scores, and obtained model fits for each subpopulation (not shown). The discount rate
for the two subpopulations are γstrong = 0.999 and γweak = 0.875.

Our next experiment explored customized incentives with the fully constrained model. The type of incentives—or bonuses
as we call them—we allowed consist of the allocation of up to 200 points at various positions in the long queue, awarded
in 50 point increments and subtracted from the front-of-queue payoff. We constrained the search such that no mid-queue
defection strategy could lead to ρ > 1. Figure 3b shows an example of such bonuses, depicted by the points awarded in a
given queue position. Although we ultimately wish to customize incentives to individuals, we settled for customizing
incentives to subpopulations, specifically, the low and high performers in Experiment 1. We then searched over the
discrete space of bonuses to determine the bonus structure that—according to the model parameterized by data from
the Experiment 1 subpopulation—would optimize performance of each subpopulation. As shown in Figure 4b, the
optimization yields A brute-force optimization yields bonuses early in the queue for the weak group, and bonuses late in
the queue for the strong group.

Experiment 4 tested participants on three line lengths—6, 10, and 14—and three bonus conditions—early, late, and no
bonuses. The 54 participants who completed Experiment 4 were median split into a weak and a strong group based on
their reward rate on no-bonus episodes only. Consistent with the model-based optimization, the weak group performs
better on early bonuses and the strong group on late bonuses (the yellow and blue bars in Figure 4c). Importantly, there is
a 2× 2 interaction between group and early versus late bonus (F (1, 51) = 11.82, p = .001) indicating a differential effect
of bonuses on the two groups. Figure 4c also shows model predictions based the parameterization determined from
Experiment 1. The model has a perfect rank correlation with the data, and correctly predicts that both bonus conditions
will facilitate performance, despite the objectively equal reward rate in the bonus and no-bonus conditions. That bonuses
should improve performance is nontrivial: the persistence induced by the bonuses must overcome the tendency to defect
because the LL reward is lower (as we observed in Experiment 1 with ρ = 1.25 versus ρ = 1.50).
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4 Discussion

In our work, we developed a formal theoretical framework to modeling the dynamics of intertemporal choice. We
hypothesized that the theory is suitable to modeling human behavior. We obtained support for the theory by demonstrating
that it explains key qualitative behavioral phenomena and predicts quantitative outcomes from a series of behavioral
experiments. Although our Experiment 1 merely suggests that the theory has the flexibility to fit behavioral data post hoc,
each following experiment used parametric constraints from the earlier experiments, leading to strong predictions from
the theory that match behavioral evidence. The theory allows us to design incentive mechanisms that steer individuals
toward better outcomes, and we showed that this idea works in practice for customizing bonuses to subpopulations
playing our queue-waiting game. The theory and the behavioral evidence both show a non-obvious and non-intuitive
statistical interaction between the subpopulations and various incentive schemes. Because the theory has just four free
parameters, it is readily pinned down to make strong, make-or-break predictions. Furthermore, it should be feasible to fit
the theory to individuals as well as to subpopulations. With such fits comes the potential for maximally effective, truly
individualized approaches to guiding intertemporal choice.
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